Abstract

Microbial oil biosynthesis is envisaged as a promising technology for sustainable production of chemicals and fuels. Sugar-based substrates are the most typical carbon sources used for this purpose where metabolic pathways and stoichiometry are well known. However, the use of low-cost substrates is crucial for the economic viability of the process. Volatile fatty acids (VFAs) are considered to be a novel low-cost carbon source for microbial lipid production. They can be utilized by oleaginous yeasts to produce and store fatty acids in form of intracellular lipid bodies. In this work, Yarrowia lipolytica growth and substrate consumption were evaluated using the major VFAs present in anaerobic effluents. Individual VFAs as well as synthetic mixtures were tested at different concentrations to determine uptake rates and potential toxicity. Increasing VFA chain length resulted in greater biomass yield although, when added individually, 4 g Carbon/L VFA (e.g. 6.45 g/L of caproic and 10 g/L of acetic acid) caused inhibitory effects. Remarkably, biomass growth increased by 2.5-fold on real anaerobic fermentation effluent compared with synthetic mixtures. When real digestate was supplemented with synthetic VFAs up to 26.5 g/L, the inhibitory effect of the acids was counterbalanced. The results provided evidence of robustness of Y. lipolytica towards low-cost fermentation effluents and present this yeast as a promising candidate for the sustainable production of microbial oil using real digestates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call