Abstract

Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms.

Highlights

  • Volatile organic compounds (VOCs) released by herbivore damaged plants are involved in a wide range of interactions and play important roles in coexistence between plants and organisms on other trophic levels

  • We found that exposing potato to VOCs from undamaged onion plants altered its volatile profile and this had a deterrent effect against host-seeking M. persicae

  • Exposure of potato plants to VOCs from undamaged onion plants significantly alters their volatile profile leading to avoidance by aphids in laboratory experiments

Read more

Summary

Introduction

Volatile organic compounds (VOCs) released by herbivore damaged plants are involved in a wide range of interactions and play important roles in coexistence between plants and organisms on other trophic levels. They can repel herbivores and attract the herbivore’s natural enemies [1]. They are involved in rapid defence signalling [2] and neighbouring plants can eavesdrop on them, inducing their own defences and changing their volatile profiles [3]. Volatile exchange between plant individuals within stands may affect insect host choice

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.