Abstract

Volatiles and major elements in abyssal glasses ranging in composition from basalt, ferrobasalt, andesite to rhyodacite from the Galapagos Spreading Center (GSC) near 95°W were analyzed using electron microprobe and high temperature mass spectrometry. Total volatile content ranged from 0.32 wt.% to 2.74 wt.%. Volatile abundances of MORB glasses from the 95.5°W propagating rift are similar to those from the adjacent normal rift (avg. 0.34 wt.%) and lower than those of N-type MORB from the Mid-Atlantic Ridge (avg. 0.49 wt.%). Although both propagating and non-propagating rift glasses contain trace amounts of methane (<0.01 wt.%) and carbon monoxide (0.04 wt.%), significantly higher 100 Fe 2O 3 FeO + Fe 2O 3 ratios are observed for the primitive propagating rift glasses. Water contents of the most primitive GSC glasses are ~0.09 wt.% suggesting a water content for the mantle source of ~0.02 wt.% which indicates that source masses with very low water content can be involved in the generation of MORB. In fractionated ferrobasalt, andesite and rhyodacite glasses from the 95.5°W propagating rift, increasing abundances of H 2O, Cl and F indicate highly incompatible behavior, whereas CO 2 and reduced carbon species appear to decrease in abundance with increasing differentiation. Ferric-ferrous ratios increase from basalt to andesite and reduce to near zero in the rhyodacite. These values are not distinguishable from those previously reported for similar fractionated glasses from the Galapagos 85°W propagating rift, despite the apparent suppression of oxide precipitation in the 85°W suite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call