Abstract

Lily is a well-known ornamental plant with a diversity of fragrant types. Basic information on lily floral scent compounds has been obtained for only a few accessions, and little is known about Lilium aroma types, the terpene synthase genes that may play roles in the production of key volatiles, or the range of monoterpenes that these genes produce. In this study, 41 cultivars were analyzed for volatile emissions, and a total of 46 individual volatile compounds were identified, 16 for the first time in lilies. Lily accessions were classified into six groups according to the composition of major scent components: faint-scented, cool, fruity, musky, fruity-honey, and lily. Monoterpenes were one of the main groups of volatiles identified, and attention was focused on terpene synthase (TPS) genes, which encode enzymes that catalyze the last steps in monoterpene synthesis. Thirty-two candidate monoterpene synthase cDNAs were obtained from 66 lily cultivars, and 64 SNPs were identified. Two InDels were also shown to result from variable splicing, and sequence analysis suggested that different transcripts arose from the same gene. All identified nucleotide substitution sites were highly correlated with the amounts of myrcene emitted, and InDel site 230 was highly correlated with the emission of all major monoterpenoid components, especially (E)-β-ocimene. Heterologous expression of five cDNAs cloned from faint-scented and strong-scented lilies showed that their corresponding enzymes could convert geranyl diphosphate to (E)-β-ocimene, α-pinene, and limonene. The findings from this study provide a major resource for the assessment of lily scent volatiles and will be helpful in breeding of improved volatile components.

Highlights

  • Floral scents have attracted the attention of people from ancient times; they are widely used in perfumes, food flavorings, and cosmetics, and in addition to flower color, they form the basis of important commercial traits of ornamental plants

  • A total of 46 volatile compounds were identified from 41 lily accessions, including 16 reported for the first time in lily (Supplementary Table 1)

  • It has been reported that monoterpenoids and benzenoids are the major compounds emitted from scented lily flowers[14,17], volatiles such as eucalyptol, linalool, and benzenoids were identified in some faint-scented lilies in this research

Read more

Summary

Introduction

Floral scents have attracted the attention of people from ancient times; they are widely used in perfumes, food flavorings, and cosmetics, and in addition to flower color, they form the basis of important commercial traits of ornamental plants. There is great variation in odor strength, even within one species, and plants have been divided into groups according to the sensory characteristics of their fragrance. There are seven recognized rose fragrances: rose, nasturtium, orris, violet, apple, lemon, and clove, according to Le Grice[11,12], which has led to the breeding of modern roses for fragrance and contributed to the appeal of rose scents in flower markets[13]. Dianthus fragrances were divided into four groups based on their scent characteristics, medicinal fragrance, citrus-like, green leafy odor, and nonscented[4] and tulip cultivars into nine groups: anise, citrus, fruity, green, herbal, herbal-honey, rosy, spicy, and woody[13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call