Abstract

Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call