Abstract

We examined the influence of two clinically relevant concentrations (1 and 2 MAC (minimum alveolar concentration)) of halothane and sevoflurane on both efflux and reverse modes of Na+-Ca2+ exchange (NCX) in enzymatically dissociated adult rat cardiac myocytes. We hypothesised that a volatile anaesthetic-induced decrease in myocardial contractility is mediated by a reduction in intracellular calcium concentration ([Ca2+]i) via inhibition of NCX. Cells were exposed to cyclopiazonic acid and zero extracellular Na+ and Ca2+ to block sacroplasmic reticulum (SR) re-uptake and NCX efflux, respectively. As [Ca2+]i increased under these conditions, extracellular Na+ was rapidly (< 300 ms) reintroduced in the presence or absence of a volatile anaesthetic to selectively promote Ca2+ efflux via NCX. Other cells exposed to cyclopiazonic acid and ryanodine to inhibit SR Ca2+ re-uptake and release were Na+ loaded in zero extracellular Ca2+. The reintroduction of extracellular Ca2+ was used to selectively activate Ca2+ influx via NCX. Compared to controls, both 1 and 2 MAC halothane as well as sevoflurane reduced NCX-mediated efflux. The reduction in NCX-mediated influx was concentration dependent, but comparable between the two anaesthetics. Both anaesthetics at each concentration also shifted the relationship between extracellular Na+ (or extent of Na+ loading) and NCX-mediated efflux (or influx) to the right. These data indicate that despite inhibition of NCX-mediated Ca2+ efflux, volatile anaesthetics produce myocardial depression. However, the inhibition of NCX-mediated Ca2+ influx may contribute to decreased cardiac contractility. The overall effect of volatile anaesthetics on the [Ca2+]i profile is likely to be determined by the relative contributions of influx vs. efflux via NCX during each cardiac cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call