Abstract

This work is focused on two current and important issues. On one hand, 12 millions of tons of PET are thrown into the sea each year. In fact, in spite of being a recyclable polymer, less than 50 % of processed PET is recycled in Europe. On the other hand, thermoset matrix composites are widely used in the industry and the end-of-life products and scraps need to be recycled. Compared to thermoplastics, thermosets present a problem for being recycled or remolded due to their irreversible curing. Many researches are focused on the recycling of carbon fiber reinforced epoxy, presenting three different paths: mechanical, thermal and chemical recycling. Thermal recycling is the most promising because it allows to recover clean fiber. However, it is an energetically expensive and non-environmentally friendly process. Chemical recycling, for its part, needs hazardous products, such as nitric acid, to dissolve the matrix. Finally, both, fibers and matrix, are recovered with mechanical recycling which consists on milling the composite to obtain finer parts. In this work, unidirectional carbon fiber reinforced epoxy is blade-milled and it is used as reinforcement of a new composite. As matrix, PET coming from recycled bottles is used. First of all, pellets of PET are produced from the bottles with a blade mill. Recycled composite and PET are mixed and a sheet is manufactured with a hot plates press. The resulting material is chemically and mechanically tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.