Abstract

Geometric routing provides a scalable and efficient way to route messages in ad hoc networks if extensive routing information is unavailable. Such algorithms require a planar graph to guarantee message delivery. The routing techniques for such guarantee usually center around the traversal of planar faces of the graph. However, in realistic wireless networks existing planarization methods, if at all applicable, tend to require extensive local storage or result in suboptimal route selection. In this paper we study an alternative approach of translating the algorithms themselves to be able to route messages over voids in non-planar graphs. We prove sufficient memory requirements for such translations. We then translate several well-known planar geometric routing algorithms and evaluate their performance in both static and mobile networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.