Abstract

We investigate the microscopic mechanisms of void growth in polycrystalline copper undergoing triaxial expansion at a large, constant strain rate: a process central to the initial phase of dynamic fracture. Void nucleation, growth, interaction and coalescence are studied using atomistic simulations. The influence of pre-existing microstructure on the void growth is characterized both for nucleation and for growth. These processes are found to be in agreement with the general features of void distributions observed in experiment. We also examine some of the microscopic mechanisms of plasticity associated with void growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.