Abstract

Little work on the void fraction behaviors along structural materials with poor-wettability for liquid metals has been performed. In the present study, void fraction behaviors around a single cylinder with non-wetting surface condition were quantitatively discussed by using a gas jet–cylinder system where the impinging jet flow, the boundary layer flow, the separation flow, and the wake flow appear. One cylinder with a non-wetting surface and two cylinders with a wetting surface were used to vary the wettability for liquid sodium, and void fraction distributions were measured around the cylinders. In the case of wetting condition, void fraction distributions around the cylinder decrease clearly in the backward region of the cylinder, and liquid-rich region is formed due to bubble separation from the cylinder surface. On the other hand, under non-wetting condition, because of two-phase flow without bubble separation on the cylinder surface, void fraction distributions show almost steady values around the cylinder compared to those with wetting surface. The void behaviors on a non-wetting surface were also confirmed by a visualization experiment conducted in water. The observed differences can be basically attributed to the work of adhesion required for liquid–solid interfacial separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.