Abstract

In this paper a new method for voiced speech enhancement combining the Empirical Mode Decomposition (EMD) and the Adaptive Center Weighted Average (ACWA) filter is introduced. Noisy signal is decomposed adaptively into intrinsic oscillatory components called Intrinsic Mode Functions (IMFs). Since voiced speech structure is mostly distributed on both medium and low frequencies, the shorter scale IMFs of the noisy signal are beneath noise, however the longer scale ones are less noisy. Therefore, the main idea of the proposed approach is to only filter the shorter scale IMFs, and to keep the longer scale ones unchanged. In fact, the filtering of longer scale IMFs will introduce distortion rather than reducing noise. The denoising method is applied to several voiced speech signals with different noise levels and the results are compared with wavelet approach, ACWA filter and EMD–ACWA (filtering of all IMFs using ACWA filter). Relying on exhaustive simulations, we show the efficiency of the proposed method for reducing noise and its superiority over other denoising methods, i.e. to improve Signal-to-Noise Ratio (SNR), and to offer better listening quality based on a Perceptual Evaluation of Speech Quality (PESQ). The present study is limited to signals corrupted by additive white Gaussian noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.