Abstract

In this paper, we propose effective feature vectors to improve the performance of voice activity detection (VAD) employing a support vector machine (SVM), which is known to incorporate an optimized nonlinear decision over two different classes. To extract the effective feature vectors, we present a novel scheme combining the a posteriori SNR, a priori SNR, and predicted SNR, widely adopted in conventional statistical model-based VAD. Based on the results of experiments, the performance of the SVM-based VAD using novel feature vectors is found to be better than that of ITU-T G.729B and other recently reported methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.