Abstract

The voice activity detectors (VADs) based on statistical models have shown impressive performances especially when fairly precise statistical models are employed. Moreover, the accuracy of the VAD utilizing statistical models can be significantly improved when machine-learning techniques are adopted to provide prior knowledge for speech characteristics. In the first part of this paper, we introduce a more accurate and flexible statistical model, the generalized gamma distribution (G ΓD) as a new model in the VAD based on the likelihood ratio test. In practice, parameter estimation algorithm based on maximum likelihood principle is also presented. Experimental results show that the VAD algorithm implemented based on G ΓD outperform those adopting the conventional Laplacian and Gamma distributions. In the second part of this paper, we introduce machine learning techniques such as a minimum classification error (MCE) and support vector machine (SVM) to exploit automatically prior knowledge obtained from the speech database, which can enhance the performance of the VAD. Firstly, we present a discriminative weight training method based on the MCE criterion. In this approach, the VAD decision rule becomes the geometric mean of optimally weighted likelihood ratios. Secondly, the SVM-based approach is introduced to assist the VAD based on statistical models. In this algorithm, the SVM efficiently classifies the input signal into two classes which are voice active and voice inactive regions with nonlinear boundary. Experimental results show that these training-based approaches can effectively enhance the performance of the VAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.