Abstract
This paper proposes a Voice Activity Detection (VAD) algorithm using Radial Basis Function (RBF) network. The k-means clustering and Least Mean Square (LMS) algorithm are used to update the RBF network to the underlying speech condition. The inputs for RBF are the three parameters a Code Excited Linear Prediction (CELP) coder, which works stably under various background noise levels. Adaptive hangover threshold applies in RBF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental results show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.