Abstract

A series of experiments were performed for toluene removal from a gaseous influent at normal temperature and atmospheric pressure by adsorption & non-thermal plasma strength & nano-catalysis technology. Non-thermal plasma was generated by dielectric barrier discharge. Sorbent & nano-catalyst were called combined catalyst which included MnO2/γ-Al2O3 and nano-Ba0.8Sr0.2Zr0.1Ti0.9O3 catalyst. MnO2/γ-Al2O3 has an advantage for ozone removal, while nano-Ba0.8Sr0.2Zr0.1Ti0.9O3 is a kind of good material for improving energy utilize rate. The results showed the synergistic technology resulted in greater enhancement of toluene removal efficiency and energy efficiency and a better inhibition for O3 formation in the gas exhaust. Based on data analysis of FT-IR, the experiment discussed decomposition mechanism and reaction process of toluene. The results showed that synergic effect could control byproducts effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.