Abstract

ABSTRACTVocal emission requires coordination with the respiratory system. Monitoring the increase in laryngeal pressure, which is needed for vocal production, allows detection of transitions from quiet respiration to vocalization-supporting respiration. Characterization of these transitions could be used to identify preparation for vocal emission and to examine the probability of it manifesting into an actual vocal production event. Specifically, overlaying the subject's respiration with conspecific calls can highlight events of call initiation and suppression, as a means of signalling coordination and avoiding jamming. Here, we present a thermal imaging-based methodology for synchronized respiration and vocalization monitoring of free-ranging meerkats. The sensitivity of this methodology is sufficient for detecting transient changes in the subject's respiration associated with the exertion of vocal production. The differences in respiration are apparent not only during the vocal output, but also prior to it, marking the potential time frame of the respiratory preparation for calling. A correlation between conspecific calls with elongation of the focal subject's respiration cycles could be related to fluctuations in attention levels or in the motivation to reply. This framework can be used for examining the capability for enhanced respiration control in animals during modulated and complex vocal sequences, detecting ‘failed’ vocalization attempts and investigating the role of respiration cues in the regulation of vocal interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.