Abstract
Vocal plasticity can occur in response to environmental and biological factors, including conspecifics' vocalizations and noise. Pinnipeds are one of the few mammalian groups capable of vocal learning, and are therefore relevant to understanding the evolution of vocal plasticity in humans and other animals. Here, we investigate the vocal plasticity of harbour seals (Phoca vitulina), a species with vocal learning abilities observed in adulthood but not puppyhood. To evaluate early mammalian vocal development, we tested 1–3 weeks-old seal pups. We tailored noise playbacks to this species and age to induce seal pups to shift their fundamental frequency (f0), rather than adapt call amplitude or temporal characteristics. We exposed individual pups to low- and high-intensity bandpass-filtered noise, which spanned—and masked—their typical range of f0; simultaneously, we recorded pups' spontaneous calls. Unlike most mammals, pups modified their vocalizations by lowering their f0 in response to increased noise. This modulation was precise and adapted to the particular experimental manipulation of the noise condition. In addition, higher levels of noise induced less dispersion around the mean f0, suggesting that pups may have actively focused their phonatory efforts to target lower frequencies. Noise did not seem to affect call amplitude. However, one seal showed two characteristics of the Lombard effect known for human speech in noise: significant increase in call amplitude and flattening of spectral tilt. Our relatively low noise levels may have favoured f0 modulation while inhibiting amplitude adjustments. This lowering of f0 is unusual, as most animals commonly display no such f0 shift. Our data represent a relatively rare case in mammalian neonates, and have implications for the evolution of vocal plasticity and vocal learning across species, including humans.This article is part of the theme issue ‘Voice modulation: from origin and mechanism to social impact (Part I)’.
Highlights
In many species, accurate communication is crucial: it can increase potential mating opportunities, the probability of escaping from a predator, and the speed of social learning [1]
We investigated vocal plasticity of harbour seal pups (Phoca vitulina)
We obtained average spectra and intensity values for each call to test if seals adjusted their vocalizations’ amplitude or spectral tilt depending on the noise condition
Summary
Accurate communication is crucial: it can increase potential mating opportunities, the probability of escaping from a predator, and the speed of social learning [1]. We obtained average spectra and intensity values for each call to test if seals adjusted their vocalizations’ amplitude or spectral tilt depending on the noise condition. To analyse the effect of the intensity of playback noise on the intensity of the seals’ vocalizations and the two spectral tilt measures described above, we used the non-parametric Mann– Whitney U test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.