Abstract

Cholinergic inputs to cortex modulate plasticity and sensory processing, yet little is known about their role in motor control. Here, we show that cholinergic signaling in a songbird vocal motor cortical area, the robust nucleus of the arcopallium (RA), is required for song learning. Reverse microdialysis of nicotinic and muscarinic receptor antagonists into RA in juvenile birds did not significantly affect syllable timing or acoustic structure during vocal babbling. However, chronic blockade over weeks reduced singing quantity and impaired learning, resulting in an impoverished song with excess variability, abnormal acoustic features, and reduced similarity to tutor song. The demonstration that cholinergic signaling in a motor cortical area is required for song learning motivates the songbird as a tractable model system to identify roles of the basal forebrain cholinergic system in motor control. NEW & NOTEWORTHY Cholinergic inputs to cortex are evolutionarily conserved and implicated in sensory processing and synaptic plasticity. However, functions of cholinergic signals in motor areas are understudied and poorly understood. Here, we show that cholinergic signaling in a songbird vocal motor cortical area is not required for normal vocal variability during babbling but is essential for developmental song learning. Cholinergic modulation of motor cortex is thus required for learning but not for the ability to sing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.