Abstract

The viability of electroencephalogram (EEG) based vocal imagery (VIm) and vocal intention (VInt) Brain-Computer Interface (BCI) systems has been investigated in this study. Four different types of experimental tasks related to humming has been designed and exploited here. They are: (i) non-task specific (NTS), (ii) motor task (MT), (iii) VIm task, and (iv) VInt task. EEG signals from seventeen participants for each of these tasks were recorded from 16 electrode locations on the scalp and its features were extracted and analysed using common spatial pattern (CSP) filter. These features were subsequently fed into a support vector machine (SVM) classifier for classification. This analysis aimed to perform a binary classification, predicting whether the subject was performing one task or the other. Results from an extensive analysis showed a mean classification accuracy of 88.9% for VIm task and 91.1% for VInt task. This study clearly shows that VIm can be classified with ease and is a viable paradigm to integrate in BCIs. Such systems are not only useful for people with speech problems, but in general for people who use BCI systems to help them out in their everyday life, giving them another dimension of system control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.