Abstract

The geographical patterns of variation shown at 20 allozyme and non-enzymatic protein-coding loci, in 8 external, and in 12 skeletal morphological characters in the rufous-collared sparrow, Zonotrichia capensis, were analyzed in order to test the local (genetic) adaptation hypothesis regarding the origin and maintenance of vocal dialects in birds. Approximately 20 males were collected from each of four sites within each of six different dialect zones. There was significant variability in both external and skeletal morphology among all 24 sites and among dialect groups. Average Wright's corrected fixation coefficient (FST ) was 0.118, indicating significant genetic differentiation among all sites, regardless of dialect. Hierarchical F statistics indicated that only 50% of among site variability was due to a dialect effect. Puna dialect sites were highly differentiated from all other sites with respect to both morphology (external and skeletal measures) and allozyme frequencies. Heterogeneity at the PGM-1 locus among puna scrub sites was the major cause of the high average FST across all sites, and within the puna scrub dialect. Average genetic differentiation among non-puna sites (FST = 0.018) was similar to differentiation among sites within each of the five non-puna dialect groups (mean FST = 0.0132 ± 0.0069). Hierarchical F statistics indicated that none of the among-site differentiation in this subset of samples was due to a dialect effect. These observations are not consistent with the local adaptation hypothesis. All significant genetic heterogeneity occurred among sites in mountainous habitats, and we suggest that topography and patchiness of habitat may have been major factors involved in population differentiation, rather than vocal dialects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call