Abstract

Accurate vocal cord leukoplakia classification is critical for the individualized treatment and early detection of laryngeal cancer. Numerous deep learning techniques have been proposed, but it is unclear how to select one to apply in the laryngeal tasks. This article introduces and reliably evaluates existing deep learning models for vocal cord leukoplakia classification. We created white light and narrow band imaging (NBI) image datasets of vocal cord leukoplakia which were classified into six classes: normal tissues (NT), inflammatory keratosis (IK), mild dysplasia (MiD), moderate dysplasia (MoD), severe dysplasia (SD), and squamous cell carcinoma (SCC). Vocal cord leukoplakia classification was performed using six classical deep learning models, AlexNet, VGG, Google Inception, ResNet, DenseNet, and Vision Transformer. GoogLeNet (i.e., Google Inception V1), DenseNet-121, and ResNet-152 perform excellent classification. The highest overall accuracy of white light image classification is 0.9583, while the highest overall accuracy of NBI image classification is 0.9478. These three neural networks all provide very high sensitivity, specificity, and precision values. GoogLeNet, ResNet, and DenseNet can provide accurate pathological classification of vocal cord leukoplakia. It facilitates early diagnosis, providing judgment on conservative treatment or surgical treatment of different degrees, and reducing the burden on endoscopists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.