Abstract
Scalable image retrieval systems usually involve hierarchical quantization of local image descriptors, which produces a visual vocabulary for inverted indexing of images. Although hierarchical quantization has the merit of retrieval efficiency, the resulting visual vocabulary representation usually faces two crucial problems: (1) hierarchical quantization errors and biases in the generation of “visual words”; (2) the model cannot adapt to database variance. In this paper, we describe an unsupervised optimization strategy in generating the hierarchy structure of visual vocabulary, which produces a more effective and adaptive retrieval model for large-scale search. We adopt a novel Density-based Metric Learning (DML) algorithm, which corrects word quantization bias without supervision in hierarchy optimization, based on which we present a hierarchical rejection chain for efficient online search based on the vocabulary hierarchy. We also discovered that by hierarchy optimization, efficient and effective transfer of a retrieval model across different databases is feasible. We deployed a large-scale image retrieval system using a vocabulary tree model to validate our advances. Experiments on UKBench and street-side urban scene databases demonstrated the effectiveness of our hierarchy optimization approach in comparison with state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.