Abstract

Exposures of nail salon technicians have received attention due to the potentially toxic materials used in nail products, which include volatile organic compounds (VOCs) such as formaldehyde and methyl methacrylate (MMA). This study characterized area and personal concentrations and other indoor air parameters in 17 nail salons in fall and winter seasons in three areas of Michigan. VOC samples were analyzed using thermal desorption, gas chromatography and mass spectroscopy, and the VOC composition of 35 nail products (e.g., polish, top coat, base coat) was measured using headspace sampling. Ventilation rates were derived using CO2 concentrations, occupancy and building information, and VOC sources were apportioned by a novel application of chemical mass balance models. We detected ethyl acetate, propyl acetate, butyl acetate, MMA, n-heptane and toluene in most salons, and benzene, D-limonene, formaldehyde, and ethyl methacrylate in some salons. While MMA was not measured in the consumer and professional products, and the use of pure MMA in salons has been not been permitted since the 1970s, MMA was found in air at concentrations from 100 to 36,000µg/m3 in 15 of 17 salons; thus its use appears to be commonplace in the industry. Personal measurements, representing exposures to workers and clients, were about twice those of the area measurements for many VOCs. This study identifies the products responsible for emissions, shows the widespread presence of MMA, and documents low ventilation rates in some salons. It also demonstrates that "informal" short-term sampling approaches can evaluate chemical exposures in nail salons, providing measurements that can be used to protect a potentially susceptible and vulnerable population. Additional controls, including restrictions on the VOC compositions and improved ventilation, can reduce exposures to salon workers and clients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.