Abstract
The solvothermal reduction of V2O5 by formaldehyde or isopropanol yields nanorods of the metastable, monoclinic VO2(B) phase. The structural transition in VO2(B), which occurs near room temperature, has been monitored using electrical resistivity measurements, performed both on pressed pellets of the nanorods as well as on nanorods dispersed on patterned contacts. A sudden, 105 increase in the electrical resistivity upon cooling below 290 K is seen in measurements on VO2(B) samples. Such a transition in the electrical resistivity has not previously been reported in this material. The transition is reminiscent of the metal-to-insulator transition observed in the case of pressed pellets of polycrystalline rutile VO2 upon cooling below 340 K. The metastable VO2(B) nanorods are converted to rutile VO2 by heating in argon, and to corundum V2O3 by reducing in 5%H2:95%N2. In both transformations, the structural integrity of the nanorods is compromised, with large, dense, rutile VO2 crystallites and less well-defined nanorods of V2O3 being formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.