Abstract

Context. The putative tori surrounding the accretion disks of active galactic nuclei (AGNs) play a fundamental role in the unification scheme of AGNs. Infrared long-baseline interferometry allows us to study the inner dust distribution in AGNs with unprecedented spatial resolution over a wide infrared wavelength range. Aims. Near- and mid-infrared interferometry is used to investigate the milli-arcsecond-scale dust distribution in the type 1.5 Seyfert nucleus of NGC 3783. Methods. We observed NGC 3783 with the VLTI/AMBER instrument in the K-band and compared our observations with models. Results. From the K-band observations, we derive a ring-fit torus radius of 0.74 +/- 0.23 mas or 0.16 +/- 0.05 pc. We compare this size with infrared interferometric observations of other AGNs and UV/optical-infrared reverberation measurements. For the interpretation of our observations, we simultaneously model our near- and mid-infrared visibilities and the SED with a temperature/density-gradient model including an additional inner hot 1400 K ring component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.