Abstract
CONTEXT: Dwarf Spheroidal Galaxies and tidal streams. AIMS: We investigate the structure and stellar population of two large stellar condensations (knots A & B) along one of the faint optical "jet-like" tidal streams associated with the spiral NGC 1097, with the goal of establishing their physical association with the galaxy and their origin. METHODS: We use the VLT/FORS2 to get deep V-band imaging and low-resolution optical spectra of two knots along NGC 1097's northeast "dog-leg" tidal stream. With this data, we explore their morphology and stellar populations. RESULTS: The FORS2 spectra show that the redshift of knot A (and perhaps of knot B) is consistent with that of NGC 1097. The FORS2 photometry shows that the two knots match very well the photometric scaling relations of canonical dwarf spheroidal galaxies (dSph). From the spectral analysis we find that knot A is mainly composed of stars near G-type, with no signs of ongoing star formation. Comparing its spectrum to a library of Galactic GC spectra, we find that the stellar population of this dSph-like object is most similar to intermediate to metal rich GCs. We find moreover, that the tidal stream shows an "S" shaped inflection as well as a pronounced stellar overdensity at knot A's position. This suggests that knot A is being tidally stripped, and populates the stellar stream with its stars. CONCLUSIONS: We have discovered that two knots along NGC 1097's northeast tidal stream share most of their spectral and photometric properties with ordinary dwarf spheroidal galaxies (dSph). Moreover, we find strong indications that the "dog-leg" tidal stream arise from the tidal disruption of knot A. Since it has been demonstrated that tidally stripping dSph galaxies need to loose most of their dark matter before starting to loose stars, we suggest that knot A is at present a CDM-poor object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.