Abstract

Recent advances in mobile computing and multimedia applications demand high-performance and low-power VLSI Digital Signal Processing (DSP) systems. One of the most widely used operations in DSP is Finite-Impulse Response (FIR) filtering. In the existing method FIR filter is designed using array multiplier, which is having higher delay and power dissipation. The proposed method presents a programmable digital Finite Impulse Response (FIR) filter for high-performance applications. The architecture is based on a computational sharing multiplier which specifically doing add and shift operation and also targets computation re-use in vector-scalar products. CSHM multiplier can be implemented by Carry Select Adder which is a high speed adder. A Carry-Select Adder (CSA) can be implemented by using single ripple carry adder and add-one circuits using the fast all-one finding circuit and low-delay multiplexers to reduce the area and accelerate the speed of CSA. An 8-tap programmable FIR filter was implemented in tanner EDA tool using CMOS 180nm technology based on the proposed CSHM technique. In which the number of transistor, power (mW) and clock cycle (ns) of the filter using array multiplier are 6000, 3.732 and 9 respectively. The FIR filter using CSHM in which the number of transistor, power (mW) and clock cycle (ns) are 23500, 2.627 and 4.5 respectively. By adopting the proposed method for the design of FIR filter, the delay is reduced to about 43.2% in comparison with the existing method. The CSHM scheme and circuit-level techniques helped to achieve high-performance FIR filtering operation.

Highlights

  • The three most widely accepted metrics for measuring the performance of a circuit are power, delay and area

  • Computation Sharing Multiplier (CSHM) multiplier can be implemented by Carry Select Adder which is a high speed adder

  • By adopting the proposed method for the design of Finite Impulse Response (FIR) filter, the delay is reduced to about 43.2% in comparison with the existing method

Read more

Summary

Introduction

The three most widely accepted metrics for measuring the performance of a circuit are power, delay and area. Minimizing area and delay has always been considered important, but reducing power consumption has been gaining prominence recently. With the increasing level of device integration and the growth in complexity of micro-elctronic circuits, reduction of power efficiency has come to fore as a primary design goal while power efficiency has always been desirable in electronic circuits. Recent advances in mobile computing and multimedia applications demand high performance and low-power VLSI Digital Signal Processing (DSP) systems. One of the most widely used operations in DSP is Finite-Impulse Response (FIR) filtering. In the existing method FIR filter is designed using array multiplier, which is having higher delay and power dissipation. Karunakaran, Department of Electrical and Electronics Engineering, R.M.D Engineering College, Kavarapettai, Tamilnadu, India

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.