Abstract

The double-precision floating-point arithmetic, specifically multiplication, is a widely used arithmetic operation for many scientific and signal processing applications. In general, the double-precision floating-point multiplier requires a large 53×53 mantissa multiplication in order to get the final result. This mantissa multiplication exists as a limit on both area and performance bounds of this operation. This paper presents a novel way to reduce this large multiplication. The proposed approach in this paper allows to use less amount of multiplication hardware compared to the traditional method. The multiplication is done by using Karatsuba technique. This design is specifically targeting Field Programmable Gate Array (FPGA) platforms, and it has also been evaluated on ASIC flow. The proposed module gives excellent performance with efficient use of resources. The design is fully compatible with the IEEE standard precision. The proposed module has shown a better performance in comparison with the best reported multipliers in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.