Abstract

A VLSI-oriented variable-length pipeline structure for data-driven processors is presented. Ordinary inline pipelines have the problem of minimizing the average total processing time through the pipeline, since subdivision of a function along the pipeline is usually optimized for the most complex operations in spite of the fact that simpler operations need fewer stages. As a solution to this problem, a variable-length pipeline scheme in which data go through only the necessary stages according to information contained within is proposed. The scheme has been implemented on a test chip to verify performance. The chip demonstrated a minimum fall-through time (data transmission time from input to output) of 14.4 ns and a data transmission rate in the pipeline of 59 megaword/s (that is, 1/16.9 ns) as a first-in first-out (FIFO) store. By modifying the data transfer control and allocating the processing functions corresponding to the data interval of 16.9 ns, this scheme is applicable as a high-performance processing unit for data-driven processors.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.