Abstract

Variable length codes (VLCs) are known for their efficient compression, but are susceptible to noisy environments due to synchronization losses that can occur from bit error propagation. The interest in reversible variable length codes (RVLCs) has come about due to the growing need for wireless exchange of compressed image and video signals over noisy channels and the ability for RVLCs to provide greater error robustness than their non-reversible counterparts (VLCs). With the current ITU H.263+ and ISO MPEG-4 standards already using RVLCs, low power implementations of the RVLC are essential in providing error robustness in real-time systems, while minimizing power consumption. This paper presents the first published VLSI architectures of a low power reversible variable length encoder and decoder. Results show power consumption of less than 1 mW for both encoder and decoder, with an additional 65% increase in area for the decoder over that of a conventional VLD design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.