Abstract

The Householder transformation is considered to be desirable among various unitary transformations due to its superior computational efficiency and robust numerical stability. Specifically, the Householder transformation outperforms the Givens rotation and the modified Gram-Schmidt methods in numerical stability under finite-precision implementations, as well as requiring fewer arithmetical operations. Consequently, the QR decomposition based on the Householder transformation is promising for VLSI implementation and real-time high throughput modern signal processing. In this paper, a recursive complex Householder transformation (CHT) with a fast initialization algorithm is proposed and its associated parallel/pipelined architecture is also considered. Then, a CHT based recursive least-squares algorithm with a fast initialization is presented. Its associated systolic array processing architecture is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.