Abstract

We present visibility computation and data organization algorithms that enable high-fidelity walkthroughs of large 3D geometric data sets. A novel feature of our walkthrough system is that it performs work proportional only to the required detail in visible geometry at the rendering time. To accomplish this, we use a precomputation phase that efficiently generates per cell vLOD: the geometry visible from a view-region at the right level of detail. We encode changes between neighboring cells' vLODs, which are not required to be memory resident. At the rendering time, we incrementally construct the vLOD for the current view-cell and render it. We have a small CPU and memory requirement for rendering and are able to display models with tens of millions of polygons at interactive frame rates with less than one pixel screen-space deviation and accurate visibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.