Abstract
Experimental investigations of antiferromagnetic topological insulator MnBi2Te4 have shown that the energy gap in samples may vary in a wide range. Since the energy gap is a key parameter of this system when used in developing new functional electronic devices, the reason for variation of the MnBi2Te4 energy gap at the Dirac point and its possible interrelation with magnetic interactions are matters of great importance and call for thorough analysis. To elucidate factors influencing the energy gap, we analyzed the variation of the electronic structure of the given topological insulator with surface van der Waals gap. Calculation data have shown that the energy gap at such structure modifications may vary in a wide range from 80–88 meV to 4–5 meV because of an intense spatial redistribution of topological surface states between septuple-layer MnBi2Te4 blocks with oppositely directed Mn magnetic moments. Our results suggest that the spatial localization of topological surface states is a primary factor governing the value of the energy gap, this localization being strongly dependent on structure modifications on the crystal surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.