Abstract

The source localization and tracking capability of the freely drifting Swallow float volumetric array is demonstrated with the matched-field processing (MFP) technique using the 14-Hz CW data collected during a 1989 float experiment conducted in the northeast Pacific. Initial MFP of the experimental data revealed difficulties in estimating the source depth and range while the source azimuth estimate was quite successful. The main cause of the MFP performance degradation was incomplete knowledge of the environment. An environment adaptation technique using a global optimization algorithm was developed to alleviate the environmental mismatch problem, allowing the ocean-acoustic environment to be adapted to the acoustic data in a matched-field sense. Using the adapted environment, the 14-Hz source was successfully localized and tracked in azimuth and range within a region of interest using the MFP technique at a later time interval. Two types of environmental parameters were considered, i.e., sound speed and modal wave number. While both approaches yield similar results, the modal wave number adaptation implementation is more computationally efficient.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.