Abstract

In recent years, lighting solutions have gradually been replaced by more efficient features, taking advantage of Light Emitting Diodes (LEDs) that have progressively conquered the market with increasingly high optical powers, low energy consumption and variable color temperatures. Along with this evolution, Visible Light Communication (VLC) technology has also been developed to use this existing lighting infrastructure and the inherent characteristic of LEDs being easily switched to high frequency to build data transmission systems. The applications of this communication technology using electromagnetic signals in the visible range are currently in a development stage with promising applications in several domains. This paper intends to study an optical communication system based on VLC to establish communication between road infrastructures and. vehicles. For this purpose, four communication channels established through the modulation of white trichromatic LED emitters are used. Detection of the optical signals is performed with a photodiode based on two stacked pin structures made of a-Si:H and a-SiC:H. This device works as an optical filter in the visible spectrum and its spectral sensitivity can be adjusted through stationary optical bias. On-Off-Keying (OOK) modulation is used. The structure of the data blocks to be transmitted was designed to avoid undesirable effects related to ambient light (flickering and/or perceptible variations in color temperature of the white light). The experimental tests of the proposed model were performed using a small-scale prototype. The results show that with the proposed system it is possible to transmit information between road infrastructure and vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call