Abstract

ABSTRACT We present results on global very long baseline interferometry (VLBI) observations at 327 MHz of 18 compact steep-spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources from the 3C and the Peacock & Wall catalogues. About 80 per cent of the sources have a ‘double/triple’ structure. The radio emission at 327 MHz is dominated by steep-spectrum extended structures, while compact regions become predominant at higher frequencies. As a consequence, we could unambiguously detect the core region only in three sources, likely due to self-absorption affecting its emission at this low frequency. Despite their low surface brightness, lobes store the majority of the source energy budget, whose correct estimate is a key ingredient in tackling the radio source evolution. Low-frequency VLBI observations able to disentangle the lobe emission from that of other regions are therefore the best way to infer the energetics of these objects. Dynamical ages estimated from energy budget arguments provide values between 2 × 103 and 5 × 104 yr, in agreement with the radiative ages estimated from the fit of the integrated synchrotron spectrum, further supporting the youth of these objects. A discrepancy between radiative and dynamical ages is observed in a few sources where the integrated spectrum is dominated by hotspots. In this case the radiative age likely represents the time spent by the particles in these regions, rather than the source age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call