Abstract

A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [M. Gutnic et al., Comput. Phys. Commun. 164, 214 (2004)] have recently shown promising results in two dimensions (2D) [J. W. Banks et al., Phys. Plasmas 18, 052102 (2011); B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142], in this paper, we present an alternative, the Vlasov multi dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability or loss of accuracy, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.