Abstract

AbstractWe study the problem of the amplification of an ultra-short seed pulse via stimulated Raman backscattering (SRB) from a long pump pulse (assumed to have an envelope with a constant amplitude), in an underdense plasma. The SRB interaction couples the pump light wave to a daughter light seed wave propagating in the opposite direction, scattered off an electron plasma wave. In recent numerical simulations, it has been observed that besides stimulated Raman backward scattering (SRBS) and stimulated Raman forward scattering, other high-frequency kinetic instabilities can occur when modified distribution functions exist during the evolution of the system. In particular, we showed the prominent role played by kinetic electrostatic electron nonlinear (KEEN) waves (Afeyan et al., 2004). We continue this work by applying a relativistic Vlasov–Maxwell code to study stimulated KEEN wave scattering (SKEENS) and its role in the SRBS short pulse amplification processes. An analysis of the full spectrum of waves participating in the amplification processes is presented. The absence of spurious noise in grid-based Vlasov codes allows us to follow the evolution of the system with a kinetic (collisionless) description. This affords us a glimpse at the intricate phase-space structures such as trapped particle orbits, which coexist and interact nonlinearly in the electron distribution function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.