Abstract

ABSTRACT LS V +44 17 is a persistent Be/X-ray binary (BeXRB) that displayed a bright, double-peaked period of X-ray activity in late 2022/early 2023. We present a radio monitoring campaign of this outburst using the Very Large Array. Radio emission was detected, but only during the second, X-ray brightest, peak, where the radio emission followed the rise and decay of the X-ray outburst. LS V +44 17 is therefore the third neutron star BeXRB with a radio counterpart. Similar to the other two systems (Swift J0243.6+6124 and 1A 0535+262), its X-ray and radio luminosity are correlated: we measure a power-law slope $\beta = 1.25^{+0.64}_{-0.30}$ and a radio luminosity of LR = (1.6 ± 0.2) × 1026 erg s−1 at a 0.5–10 keV X-ray luminosity of 2 × 1036 erg s−1 (i.e. $\sim 1~{{\ \rm per\ cent}}$LEdd). This correlation index is slightly steeper than measured for the other two sources, while its radio luminosity is higher. We discuss the origin of the radio emission, specifically in the context of jet launching. The enhanced radio brightness compared to the other two BeXRBs is the first evidence of scatter in the giant BeXRB outburst X-ray–radio correlation, similar to the scatter observed in subclasses of low-mass X-ray binaries. While a universal explanation for such scatter is not known, we explore several options: we conclude that the three sources do not follow proposed scalings between jet power and neutron star spin or magnetic field, and instead briefly explore the effects that ambient stellar wind density may have on BeXRB jet luminosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.