Abstract

We call a multigraph $(k,d)$-edge colourable if its edge set can be partitioned into $k$ subgraphs of maximum degree at most $d$ and denote as $\chi'_{d}(G)$ the minimum $k$ such that $G$ is $(k,d)$-edge colourable. We prove that for every odd integer $d$, every multigraph $G$ with maximum degree $\Delta$ is $(\lceil \frac{3\Delta - 1}{3d - 1} \rceil, d)$-edge colourable and this bound is attained for all values of $\Delta$ and $d$. An easy consequence of Vizing's Theorem is that, for every (simple) graph $G,$ $\chi'_{d}(G) \in \{ \lceil \frac{\Delta}{d} \rceil, \lceil \frac{\Delta+1}{d} \rceil \}$. We characterize the values of $d$ and $\Delta$ for which it is NP-complete to compute $\chi'_d(G)$. These results generalize classic results on the chromatic index of a graph by Shannon, Holyer, Leven and Galil and extend a result of Amini, Esperet and van den Heuvel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.