Abstract

It is highly desirable yet challenging to generate image captions that can describe novel objects which are unseen in caption-labeled training data, a capability that is evaluated in the novel object captioning challenge (nocaps). In this challenge, no additional image-caption training data, other than COCO Captions, is allowed for model training. Thus, conventional Vision-Language Pre-training (VLP) methods cannot be applied. This paper presents VIsual VOcabulary pre-training (VIVO) that performs pre-training in the absence of caption annotations. By breaking the dependency of paired image-caption training data in VLP, VIVO can leverage large amounts of paired image-tag data to learn a visual vocabulary. This is done by pre-training a multi-layer Transformer model that learns to align image-level tags with their corresponding image region features. To address the unordered nature of image tags, VIVO uses a Hungarian matching loss with masked tag prediction to conduct pre-training. We validate the effectiveness of VIVO by fine-tuning the pre-trained model for image captioning. In addition, we perform an analysis of the visual-text alignment inferred by our model. The results show that our model can not only generate fluent image captions that describe novel objects, but also identify the locations of these objects. Our single model has achieved new state-of-the-art results on nocaps and surpassed the human CIDEr score.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.