Abstract

The performance and intrinsic mechanism of vivianite, a natural mineral containing structural Fe(II), for peroxymonosulfate (PMS) activation and pollutant degradation under dark conditions were comprehensively explored in this study. It was found that vivianite was able to efficiently activate PMS to degrade various pharmaceutical pollutants under dark conditions, in which the corresponding reaction rate constant of ciprofloxacin (CIP) degradation was 47- and 32-fold higher than that of magnetite and siderite, respectively. SO4·−, ·OH, Fe(IV) and electron-transfer processes were found in the vivianite-PMS system, while SO4·− was the main contributor to CIP degradation. Moreover, mechanistic explorations revealed that the Fe site on the surface of vivianite could bind PMS in the form of a bridge position, and thus vivianite could rapidly activate absorbed PMS due to its strong electron-donating ability. Additionally, it was illustrated that the used vivianite could be efficiently regenerated by either chemical or biological reduction. This study may provide an alternative application of vivianite in addition to phosphorus recovery from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.