Abstract

Vitronectin (VN) binds to plasminogen activator inhibitor-1 (PAI-1) and integrins and may play an important role in the vascular response to injury by regulating fibrinolysis and cell migration. However, the role of VN in the earliest response to vascular injury, thrombosis, is not well characterized. The purpose of this study was to test the hypothesis that variation in vitronectin expression alters the thrombotic response to arterial injury in mice. Ferric chloride (FeCl3) injury was used to induce platelet-rich thrombi in mouse carotid arteries. Wild-type (VN +/+, n = 14) and VN-deficient (VN -/-, n = 15) mice, matched for age and gender, were studied. Time to occlusion after FeCl3 injury was determined by application of a Doppler flowprobe to the carotid artery. Occlusion times of VN -/- mice were significantly shorter than those of VN +/+ mice (6.0 +/- 1.2 minutes v 17.8 +/- 2.3 minutes, respectively, P < .001). Histologic analysis of injured arterial segments showed that thrombi from VN +/+ and VN -/- mice consisted of dense platelet aggregates. In vitro studies of murine VN +/+ and VN -/- platelets showed no significant differences in ADP-induced aggregation, but a trend towards increased thrombin-induced aggregation in VN -/- platelets. Purified, denatured VN inhibited thrombin-induced platelet aggregation, whereas native VN did not. Thrombin times of plasma from VN -/- mice (20.5 +/- 2.1 seconds, n = 4) were significantly shorter than those of VN +/+ mice (34.2 +/- 6.7 seconds, n = 4, P < .01), and the addition of purified VN to VN -/- plasma prolonged the thrombin time into the normal range, suggesting that VN inhibits thrombin-fibrinogen interactions. PAI-1-deficient mice (n = 6) did not demonstrate significantly enhanced arterial thrombosis compared with wild-type mice (n = 6), excluding a potential indirect antithrombin function of VN mediated by interactions with PAI-1 as an explanation for the accelerated thrombosis observed in VN -/- mice. These results suggest that vitronectin plays a previously unappreciated antithrombotic role at sites of arterial injury and that this activity may be mediated, at least in part, by inhibiting platelet-platelet interactions and/or thrombin procoagulant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call