Abstract

The aim of this study was to test whether vitrification of sterlet Acipenser ruthenus and Russian sturgeon Acipenser gueldenstaedtii ovarian tissue through needle-immersed vitrification (NIV) is an efficient strategy for the preservation of oogonia (OOG) in order to supplement the current conservation efforts for these endangered fish species. Histological analyses of the gonads displayed that the ovaries of both species were immature and contained predominantly OOG and primary oocytes. The germline origin of these cells was verified by localization of the vasa protein through immunocytochemistry. NIV protocol was optimized by testing different equilibration (ES) and vitrification solutions (VS) containing various concentrations of dimethyl sulfoxide (Me2SO), propylene glycol (PG) or methanol (MeOH). In sterlet, the highest average viability (55.7 ± 11.5%) was obtained by using a combination of 1.5 M PG and 1.5 M Me2SO in the ES, and 1.5 M MeOH and 5.5 M Me2SO in the VS. In Russian sturgeon, the highest average viability (49.4 ± 17.1%) was obtained by using a combination of 1.5 M MeOH and 1.5 M Me2SO in the ES, and 3 M PG and 3 M Me2SO in the VS. To test whether vitrified/warmed OOG are functional, we have conducted an intra-specific transplantation assay to verify whether transplanted sterlet OOG will colonize the gonads of recipient fish. Fluorescently labelled cells were detected within recipient gonads at 2 and 3 months post-fertilization (mpf). Colonization rates of vitrified/warmed OOG (70% at 2 mpf and 61% at 3 mpf) were similar to those of fresh OOG (80% at 2 mpf and 70% at 3 mpf). This study has demonstrated that vitrification of ovarian tissue is an effective method for the preservation of OOG, and that the vitrified/warmed cells are functional and are able to colonize recipient gonads after transplantation similarly to the fresh cells. Since the vitrification procedure displayed in this study is simple and does not require complex and expensive laboratory equipment, it can be readily applied in field conditions, and therefore it can be invaluable for the conservation efforts of the critically endangered sturgeon species. However, care needs to be taken that despite the research conducted so far, donor-derived progeny was not yet obtained in sturgeons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.