Abstract

传统咬尾码最大似然(ML)译码算法在译码时存在两个问题:复杂度高和消耗存储空间大。针对这两个问题,该文提出了一种基于Viterbi算法和双向搜索算法的最大似然译码算法。新算法利用Viterbi算法得到的幸存路径度量值与最大似然咬尾路径度量值的关系,删除不可能的起始状态及其对应的咬尾格形子图,缩小搜索空间;然后利用双向搜索算法中门限值与最大似然咬尾路径度量值的关系来降低双向搜索算法的复杂度,从而得到一种在咬尾格形图上高效率的最大似然译码算法。新的最大似然译码算法不仅降低了译码复杂度,同时降低了译码器对存储空间的需求。

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.