Abstract

In Oncopeltus fasciatus, evidence shown here indicates it is calmodulin (CaM) that activates phospholipase-C (PLC), beginning a signalling pathway necessary for endocytic uptake of yolk precursor molecules. Epithelial cell-produced CaM, transported to oocytes via gap junctions, has been shown to be required for receptor-mediated endocytic uptake of vitellogenins (Vgs, the protein precursors of yolk). To determine if CaM was directly or indirectly stimulating the phospholipase-C (PLC) signalling cascade and thus controlling Vg endocytosis we used a series of molecules known to inactivate various elements of the pathway. W-7 prevents CaM from interacting with other molecules. Neomycin isolates PIP 2 from PLC. U-73122 directly inactivates PLC. 2-APB blocks IP 3 receptors which would otherwise cause release of Ca 2+. Verapamil and CdCl 2 block Ca 2+ release channels. Staurosporin and calphostin are inhibitors of PK-C. 1-Hexadecyl-2-acetyl glycerol (HAG) binds to diacylglycerol (DAG). Through the use of these antagonists we show here that: (1) the activation of phospholipase-C in this system requires CaM. (2) Stimulated phospholipase-C converts PIP 2 into IP 3 and DAG. (3) IP 3 causes increase in cytosolic Ca 2+. (4) DAG and Ca 2+ each stimulate phosphokinase-C, resulting in endocytosis of Vgs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.