Abstract

AbstractIn the spathebothriidean tapeworm Didymobothrium rudolphii (Monticelli, 1890) the fine structure of the vitellocytes at different stages of their development within the vitelline follicles, vitelline ducts and uterus was studied for the first time using transmission electron microscopy. The vitellocyte inclusions of D. rudolphii are shell globule clusters containing tightly packed shell globules associated with a matrix of moderate electron density, glycogen granules, large electron-lucent lipid droplets (up to 3 μm in diameter), and, occasionally, a lipid droplet may occur in the nucleus of the vitellocytes. The diameter of the clusters ranges from 0.4 to 2.5 μm, the number of shell globules in the clusters varies from 8 to 45, and the size of the globules ranges from 0.12 to 0.25 μm and they are of approximately homogeneous sizes within a cluster. Most vitellocyte lipid droplets have a heterogeneous configuration with a ‘cavity’ inside them when they are within vitelline ducts and intrauterine eggs. Vitellocytes of the eggs contain dark concentric bodies and lipid droplets. The interstitial tissue has a syncytial structure. The morphological parameters of the diameter and shape of shell globule clusters, arrangement of shell globules in clusters, number and diameter of globules within clusters, types of lipid droplets and presence of dark concentric bodies are compared with those of two other spathebothriidean genera, Cyathocephalus and Diplocotyle. The comparative data demonstrate that vitelline material morphology has unique features in three spathenothriidean genera and may be used as evidence for the recognition of separate taxa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.