Abstract

ObjectiveVitamin K2 (MK-4, menaquinone 4) plays an important role in osteoprotection. The present study aimed to examine the effect of MK-4 on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro and probed the potential signaling pathway. DesignPDLSCs were isolated from extracted premolars by tissue block culture method and were identified by flow cytometry. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to determine the effect of MK-4 on the proliferation of PDLSCs. Alkaline phosphatase (ALP) activity was analyzed quantitatively, and extracellular matrix mineralization was examined by Alizarin Red S staining. The mRNA and protein expression levels of ALP, Runx Family Transcription Factor 2 (Runx2), osteocalcin (OCN), and Sp7 Transcription Factor (SP7; Osterix) were measured by qRT-PCR and Western blot. In addition, after adding the inhibitor XAV-939, Western blot was used to assess the correlation with the Wnt/β-catenin signaling pathway. The above results were obtained by observing at least three fields randomly, and each experiment was repeated at least three times. ResultsThis study found that 10−5 M MK-4 significantly promoted the osteogenic differentiation of PDLSCs. Gene and protein expression levels of ALP, Runx2, OCN, and Osterix were all upregulated compared with control. Remarkably, after blocking the Wnt/β-catenin signaling pathway with XAV-939, the effect of MK-4 was apparently reversed. ConclusionThese results demonstrate that MK-4 can promote the osteogenic differentiation of PDLSCs, which is likely related to the activation of the Wnt/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call