Abstract

ObjectiveThe aim of this study was to understand the mechanism of action of vitamin K1 against streptozotocin (STZ)-induced diabetes. MethodsMale Wistar rats were administered 35 mg/kg STZ and after 3 d were treated with vitamin K1 (5 mg/kg, twice a week) for 3 months. Blood glucose was monitored twice a month. At the end of the study, animals were sacrificed and pancreas dissected out and analyzed for free radicals, antioxidants, metabolic enzymes related to glucose, membrane ATPases, histopathological evaluation, and expression of nuclear factor (NF)-κB and inducible nitric oxide synthase (iNOS). Glycated hemoglobin, plasma insulin, and islet area were determined at the end of the study. ResultsTreatment of STZ-induced type 1 diabetic rats with vitamin K1 reduced oxidative stress, enhanced antioxidants, and inhibited aldose reductase in pancreas. Vitamin K1 administration rescued endocrine pancreas from STZ-induced cell death, resulting in enhanced insulin secretion and normal blood glucose and glycosylated hemoglobin levels. Histologic analyses also showed the antidiabetic potential of vitamin K1. Measure of pancreatic islet area showed an increase in the islet area upon vitamin K1 treatment when compared with the STZ-administered group, suggesting the possibility of regeneration. To understand the mechanism involved in vitamin K1 mediated changes, we performed immunohistochemical analyses for NF-κB and iNOS enzyme. Vitamin K1 was shown to suppress NF-κB activation and iNOS expression in the islets upon administration of STZ. ConclusionThis work shows, to our knowledge for the first time, the mechanism of action of vitamin K1 against type 1 diabetes and the possible therapeutic use of this vitamin in stimulating islet cell proliferation/regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.