Abstract

BACKGROUNDWe hypothesized that obesity-associated hepatosteatosis is a pathophysiological chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were used to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepatosteatosis versus healthy controls.METHODSCustom-synthesized deuterated α-tocopherols (d3- and d6-α-tocopherols) were administered to hospitalized healthy women and women with hepatosteatosis under investigational new drug guidelines. Fluorescently labeled α-tocopherol was custom-synthesized for cell studies.RESULTSIn healthy subjects, 85% of intravenous d6-α-tocopherol disappeared from the circulation within 20 minutes but reappeared within minutes and peaked at 3-4 hours; d3- and d6-α-tocopherols localized to lipoproteins. Lipoprotein redistribution occurred only in vivo within 1 hour, indicating a key role of the liver in uptake and re-release. Compared with healthy subjects who received 2 mg, subjects with hepatosteatosis had similar d6-α-tocopherol entry rates into liver but reduced initial release rates (P < 0.001). Similarly, pharmacokinetics parameters were reduced in hepatosteatosis subjects, indicating reduced hepatic d6-α-tocopherol output. Reductions in kinetics and pharmacokinetics parameters in hepatosteatosis subjects who received 2 mg were echoed by similar reductions in healthy subjects when comparing 5- and 2-mg doses. In vitro, fluorescent-labeled α-tocopherol localized to lipid in fat-loaded hepatocytes, indicating sequestration.CONCLUSIONSThe unique role of the liver in vitamin E physiology is dysregulated by excess liver fat. Obesity-associated hepatosteatosis may produce unrecognized hepatic vitamin E sequestration, which might subsequently drive liver disease. Our findings raise the possibility that hepatosteatosis may similarly alter hepatic physiology of other fat-soluble vitamins.TRIAL REGISTRATIONClinicalTrials.gov, NCT00862433.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases and NIH grants DK053213-13, DK067494, and DK081761.

Highlights

  • The global obesity epidemic has sobering consequences to upend human health [1,2,3]

  • To characterize vitamin E trafficking in healthy subjects, we used 2 custom-synthesized deuterated α-tocopherol preparations: an oral solution of d3-α-tocopherol and an intravenous small-particle sterile emulsion with d6-α-tocopherol

  • Both were administered to subjects under the auspices of an approved US FDA investigational new drug (IND) application

Read more

Summary

Introduction

Concerning is obesity-associated hepatosteatosis (HS), or nonalcoholic fatty liver. Nonalcoholic fatty liver precedes nonalcoholic steatohepatitis (NASH) and cirrhosis and hepatocellular carcinoma. The penetrance of this spectrum of liver diseases is increasing rapidly and concurrently with obesity and diabetes, with staggering consequences for morbidity, mortality, and health care costs. Prevention strategies are gold standards to avert the need for treatment, disease consequences, and huge societal cost. We hypothesized that obesity-associated hepatosteatosis is a pathophysiological chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were used to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepatosteatosis versus healthy controls

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.